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In recent years, reduced-order modelling techniques based on Krylov-subspace
iterations, especially the Lanczos algorithm and the Arnoldi process, have be-
come popular tools for tackling the large-scale time-invariant linear dynamical
systems that arise in the simulation of electronic circuits. This paper reviews
the main ideas of reduced-order modelling techniques based on Krylov sub-
spaces and describes some applications of reduced-order modelling in circuit
simulation.
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1. Introduction

Roughly speaking, the problem of model reduction is to replace a given
mathematical model of a system or a process by a model that is much
‘smaller’ than the original model, but still describes, at least ‘approximately’,
certain aspects of the system or process. Clearly, model reduction involves
a number of interesting issues. First and foremost is the issue of select-
ing appropriate approximation schemes that allow the definition of suitable
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reduced-order models. In addition, it is often important that the reduced-
order model preserves certain crucial properties of the original system, such
as stability or passivity. Other issues include the characterization of the
quality of the models, the extraction of the data from the original model
that is needed to actually generate the reduced-order models, and the ef-
ficient and numerically stable computation of the models. We refer the
reader to Fortuna, Nunnari and Gallo (1992) for a review of general model-
reduction techniques, and to the more specialized survey papers by Bultheel
and Van Barel (1986), Bultheel and De Moor (2000), Freund (1997, 1999b),
and Bai (2002), which review methods based on Padé and more general ra-
tional approximation, and techniques tailored to applications in VLSI circuit
simulation.

In this paper, we discuss Krylov subspace-based reduced-order modelling
techniques for large-scale linear dynamical systems, especially those that
arise in the simulation of electronic circuits and of microelectromechanical
systems.

We begin with a brief description of reduced-order modelling problems
in circuit simulation. Electronic circuits are usually modelled as networks
whose branches correspond to the circuit elements and whose nodes corre-
spond to the interconnections of the circuit elements. Such networks are
characterized by three types of equation. Kirchhoff’s current law (KCL)
states that, for each node of the network, the currents flowing in and out of
that node sum up to zero. Kirchhoff’s voltage law (KVL) states that, for
each closed loop of the network, the voltage drops along that loop sum up
to zero. Branch constitutive relations (BCRs) are equations that character-
ize the actual circuit elements. For example, the BCR of a linear resistor
is Ohm’s law. The BCRs are linear equations for simple devices, such as
linear resistors, capacitors, and inductors, and they are nonlinear equations
for more complex devices, such as diodes and transistors. Furthermore, in
general, the BCRs involve time-derivatives of the unknowns, and thus they
are ordinary differential equations (ODEs). On the other hand, the KCLs
and KVLs are linear algebraic equations that only depend on the topology
of the circuit.

The KCLs, KVLs, and BCRs can be summarized as a system of first-
order, in general nonlinear, differential-algebraic equations (DAEs) of the
form

d

dt
q(x̂, t) + f(x̂, t) = 0, (1.1)

together with suitable initial conditions. Here, x̂ = x̂(t) is the unknown vec-
tor of circuit variables at time t, the vector-valued function f(x̂, t) represents
the contributions of nonreactive elements, such as resistors and sources, and
the vector-valued function d

dt q(x̂, t) represents the contributions of reactive
elements, such as capacitors and inductors. There are several established
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methods (Vlach and Singhal 1994), such as sparse tableau, nodal formula-
tion, and modified nodal analysis, for generating a system of equations of
the form (1.1) from a so-called netlist description of a given circuit. The
vector functions x̂, f , q, as well as their dimension, depend on the chosen
formulation method. The most general method is sparse tableau, which con-
sists of just listing all the KCLs, KVLs, and BCRs. The other formulation
methods can be interpreted as starting from sparse tableau and eliminating
some of the unknowns by using some of the KCL or KVL equations.

For all the standard formulation methods, the dimension of the sys-
tem (1.1) is of the order of the number of elements in the circuit. Since
today’s VLSI circuits can have up to hundreds of millions of circuit ele-
ments, systems (1.1) describing such circuits can be of extremely large di-
mension. Reduced-order modelling allows us to first replace large systems of
the form (1.1) by systems of smaller dimension and then tackle these smaller
systems by suitable DAE solvers. Ideally, we would like to apply nonlinear
reduced-order modelling directly to the nonlinear system (1.1). However,
since nonlinear reduction techniques are a lot less developed and less well
understood than linear ones, linear reduced-order modelling is almost always
employed at present. To that end, we either linearize the system (1.1) or de-
couple (1.1) into nonlinear and linear subsystems; see, e.g., Freund (1999b)
and the references given there.

For example, the first case arises in small-signal analysis; see, e.g., Freund
and Feldmann (1996b). Given a DC operating point, say x̂0, of the circuit
described by (1.1), we linearize the system (1.1) around x̂0. The resulting
linearized version of (1.1) is of the following form:

E
dx

dt
= Ax + Bu(t), (1.2)

y(t) = CT x(t). (1.3)

Here, A = −Dxf is the negative of the Jacobian matrix of f at the DC
operating point x̂0, and E = Dxq is the Jacobian matrix of q at x̂0. Fur-
thermore, x(t) = x̂(t) − x̂0 is the distance of the solution x̂ of (1.1) to the
DC operating point, u(t) is the vector of excitations applied to the sources
of the circuit, and y(t) is the vector of circuit variables of interest. Equa-
tions (1.2) and (1.3) represent a time-invariant linear dynamical system. Its
state-space dimension, N , is the length of the vector x of circuit variables.
For a circuit with many elements, the system (1.2) and (1.3) is thus of very
high dimension. The idea of reduced-order modelling is then to replace the
system (1.2) and (1.3) by one of the same form,

En
dz

dt
= Anz + Bnu(t),

y(t) = CT
n z(t),
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but of much smaller state-space dimension n ≪ N .
Time-invariant linear dynamical systems of the form (1.2) and (1.3) also

arise when equations describing linear subcircuits of a given circuit are de-
coupled from the system (1.1) that characterizes the whole circuit; see,
e.g., Freund (1999b). For example, as discussed in Cheng, Lillis, Lin and
Chang (2000), the interconnect and the pin package of VLSI circuits are
often modelled as large linear RCL networks consisting only of resistors, ca-
pacitors, and inductors. Such linear subcircuits are described by systems of
the form (1.2) and (1.3), where x(t) is the vector of circuit variables associ-
ated with the subcircuit, and the vectors u(t) and y(t) contain the variables
of the connections of the subcircuit to the generally nonlinear remainder of
the whole circuit. By replacing, in the nonlinear system (1.1), the linear
subsystem (1.2) and (1.3) by a reduced-order model of much smaller state-
space dimension, the dimension of (1.1) can be reduced significantly, before
a DAE solver is then applied to such a smaller version of (1.1).

The remainder of this paper is organized as follows. In Section 2, we
review some basic facts about time-invariant linear dynamical systems. In
Section 3, we introduce reduced-order models that are defined via Padé or
Padé-type approximation. In Section 4, we discuss the concepts of stability
and passivity of linear dynamical systems. In Section 5, we discuss reduced-
order modelling approaches based on Lanczos and Lanczos-type methods.
In Section 6, we describe the use of the Arnoldi process for reduced-order
modelling. In Section 7, we discuss reduced-order modelling of noise-type
transfer functions, which arise in circuit-noise computations. Section 8 is
concerned with reduced-order modelling of second-order dynamical systems.
Finally, in Section 9, we make some concluding remarks.

2. Time-invariant linear dynamical systems

In this section, we review some basic facts about time-invariant linear dy-
namical systems.

2.1. State-space description

We consider m-input p-output time-invariant linear dynamical systems given
by a state-space description of the form

E
dx

dt
= Ax + Bu(t), (2.1)

y(t) = CT x(t) + Du(t), (2.2)

together with suitable initial conditions. Here, A, E ∈ R
N×N , B ∈ R

N×m,
C ∈ R

N×p, and D ∈ R
p×m are given matrices, x(t) ∈ R

N is the vector
of state variables, u(t) ∈ R

m is the vector of inputs, y(t) ∈ R
p the vector
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of outputs, N is the state-space dimension, and m and p are the number
of inputs and outputs, respectively. Note that systems of the form (1.2)
and (1.3) are just a special case of (2.1) and (2.2) with D = 0.

The linear system (2.1) and (2.2) is called regular if the matrix E in (2.1) is
nonsingular, and it is called singular or a descriptor system if E is singular.
In the regular case, the linear system (2.1) and (2.2) can always be re-
written as

dx

dt
=

(
E−1A

)
x +

(
E−1B

)
u(t),

y(t) = CT x(t) + Du(t),

which is also a system of the form (2.1) and (2.2) with E = I. Note that
the first equation is just a system of ODEs.

The linear dynamical systems arising in circuit simulation are descriptor
systems in general. Therefore, in the following, we allow E ∈ R

N×N to be
a general, possibly singular, matrix. The only assumption that we make on
the matrices A and E in (2.1) is that the matrix pencil A − sE be regular,
that is, the matrix A− sE is singular only for finitely many values of s ∈ C.

In the case of singular E, equation (2.1) represents a system of DAEs,
rather than ODEs. Solving DAEs is significantly more complex than solving
ODEs. Moreover, there are constraints on the possible initial conditions that
can be imposed on the solutions of (2.1). For a detailed discussion of DAEs
and the structure of their solutions, we refer the reader to Campbell (1980,
1982), Dai (1989), and Verghese, Lévy and Kailath (1981). Here, we only
present a brief glimpse of the issues arising in DAEs.

A general descriptor system (2.1) has three different types of modes, which
are characterized by the eigenstructure of the pencil A− sE; see, e.g., Ben-
der and Laub (1987). The finite eigenvalues, s ∈ C, of the pencil are the
finite dynamic modes of (2.1). The eigenvectors associated with an infinite
eigenvalue s = ∞ of the pencil span the space of nondynamic solutions
of (2.1), and the corresponding eigenvalues s = ∞ are the nondynamic
modes of (2.1). Note that the set of nondynamic solutions of (2.1) is just
the null space of E. If r := rankE is bigger than the degree ρ of the
characteristic polynomial det(A− sE), then the pencil also has r− ρ impul-
sive modes. The impulsive modes correspond to generalized eigenvectors of
eigenvalues s = ∞ with Jordan blocks of size bigger than 1. A descriptor
system is called impulsive-free if it has no impulsive modes.

To explain the different types of modes further, we bring the matrices
A and E in (2.1) to an appropriate normal form. For any regular pencil
A − sE, there exist nonsingular matrices P and Q such that

P (A − sE)Q =

[
A(1) − sI 0

0 I − sJ

]
, (2.3)
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where the submatrix J is nilpotent. The matrix pencil on the right-hand
side of (2.3) is called the Weierstrass form of A − sE. Assuming that the
matrices A and E in (2.1) are already in Weierstrass form, the system (2.1)
can be decoupled as follows:

dx(1)

dt
= A(1)x(1) + B(1)u(t), (2.4)

J
dx(2)

dt
= x(2) + B(2)u(t). (2.5)

The first subsystem, (2.4), is just a system of linear ODEs. Thus, for any
given initial condition x(1)(0) = x̂(1), there exists a unique solution of (2.4).
Moreover, the so-called free-response of (2.4), that is, the solutions x(t) for
t ≥ 0 when u ≡ 0, consists of combinations of exponential modes at the
eigenvalues of the matrix A(1). Note that, in view of (2.3), the eigenvalues
of A(1) are just the finite eigenvalues of the pencil A − sE and thus they
are the finite dynamic modes. The solutions of the second subsystem, (2.5),
however, are of a quite different nature. In particular, the free-response
of (2.5) consists of ki − 1 independent impulsive motions for each ki × ki

Jordan block of the matrix J ; see, e.g., Verghese et al. (1981).
For example, consider the case when the nilpotent matrix J in (2.5) is a

single k × k Jordan block, that is,

J =




0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . 1
0 · · · · · · 0 0



∈ R

k×k.

The k components of the free-response x(2)(t) of (2.5) are then given by

x
(2)
1 (t) = −x

(2)
2 (0−)δ(t) − x

(2)
3 (0−)δ(1)(t) − · · · − x

(2)
k (0−)δ(k−2)(t),

x
(2)
2 (t) = −x

(2)
3 (0−)δ(t) − x

(2)
4 (0−)δ(1)(t) − · · · − x

(2)
k (0−)δ(k−3)(t),

... =
...

x
(2)
k−1(t) = −x

(2)
k (0−)δ(t),

x
(2)
k (t) = 0.

Here, δ(t) is the delta function and δ(i)(t) is its ith derivative. Moreover,

x
(2)
i (0−), i = 2, 3, . . . , k, are the components of the initial conditions that

can be imposed on (2.5). Note that there are only k − 1 degrees of freedom

for the initial condition and that it is not possible to prescribe x
(2)
1 (0−).
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In particular, the free-response of (2.5) corresponding to a 1 × 1 Jordan
block of J is just the zero solution, and there is no degree of freedom for the
selection of an initial value corresponding to that block.

Finally, we remark that, in view of (2.3), the eigenvalues of the matrix
pencil A − sE corresponding to the subsystem (2.5) are just the infinite
eigenvalues of A − sE and thus the nondynamic modes.

2.2. Reduced-order models and transfer functions

The basic idea of reduced-order modelling is to replace a given system by
a system of the same type, but with smaller state-space dimension. Thus,
a reduced-order model of state-space dimension n of a given time-invariant
linear dynamical system (2.1) and (2.2) of dimension N is a system of the
form

En
dz

dt
= Anz + Bnu(t), (2.6)

y(t) = CT
n z(t) + Dnu(t), (2.7)

where An, En ∈ R
n×n, Bn ∈ R

n×m, Cn ∈ R
n×p, Dn ∈ R

p×m, and n < N .
The challenge then is to choose the matrices An, En, Bn, Cn, and Dn

in (2.6) and (2.7) such that the reduced-order model in some sense ap-
proximates the original system. One possible measure of the approximation
quality of reduced-order models is based on the concept of transfer functions.

If we assume zero initial conditions, then, by applying the Laplace trans-
form

X(s) =

∫
∞

0
x(t) e−st dt

to the original system (2.1) and (2.2), we obtain the following algebraic
equations:

sEX(s) = AX(s) + BU(s),

Y (s) = CT X(s) + DU(s).

Here, the frequency-domain variables X(s), U(s), and Y (s) are the Laplace
transforms of the time-domain variables of x(t), u(t), and y(t), respectively.
Note that s ∈ C. Then, formally eliminating X(s) in the above equations,
we arrive at the frequency-domain input-output relation Y (s) = H(s)U(s).
Here,

H(s) := D + CT (sE − A)−1B, s ∈ C, (2.8)

is the so-called transfer function of the system (2.1) and (2.2). Note that

H : C �→ (C ∪∞)p×m,

is a (p × m)-matrix-valued rational function.
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Similarly, the transfer function, Hn, of the reduced-order model (2.6)
and (2.7) is given by

Hn(s) := Dn + CT
n (sEn − An)−1Bn, s ∈ C. (2.9)

Note that Hn is also a (p × m)-matrix-valued rational function.

3. Padé and Padé-type models

The concept of transfer functions allows us to define reduced-order models
by means of Padé or Padé-type approximation.

3.1. Padé approximants of transfer functions

Let s0 ∈ C be any point such that s0 is not a pole of the transfer function
H given by (2.8). In practice, the point s0 is chosen such that it is in some
sense close to the frequency range of interest. We remark that the frequency
range of interest is usually a subset of the imaginary axis in the complex
s-plane. Since s0 is not a pole of H, the function H admits the Taylor
expansion

H(s) = µ0 + µ1 (s − s0) + µ2 (s − s0)
2 + · · · + µj (s − s0)

j + · · · (3.1)

about s0. The coefficients µj , j = 0, 1, . . . , in (3.1) are called the moments
of H about the expansion point s0. Note that each µj is a p × m matrix.

A reduced-order model (2.6) and (2.7) of state-space dimension n is called
an nth Padé model (at the expansion point s0) of the original system (2.1)
and (2.2) if the Taylor expansions about s0 of the transfer function (2.8), H,
of the original system and the transfer function (2.9), Hn, of the reduced-
order model agree in as many leading terms as possible, that is,

H(s) = Hn(s) + O
(
(s − s0)

q(n)
)
, (3.2)

where q(n) is as large as possible. For an introduction to Padé approxima-
tion, we refer the reader to Baker, Jr. and Graves-Morris (1996). In Feld-
mann and Freund (1995b) and Freund (1995), it was shown that

q(n) ≥

⌊
n

m

⌋
+

⌊
n

p

⌋
,

with equality in the ‘generic’ case.
Even though Padé models are defined via the local approximation prop-

erty (3.2), in practice, they usually are excellent approximations over large
frequency ranges. The following single-input single-output example illus-
trates this statement. The example is a circuit resulting from the so-called
PEEC discretization (Ruehli 1974) of an electromagnetic problem. The cir-
cuit is an RCL network consisting of 2100 capacitors, 172 inductors, 6990
inductive couplings, and a single resistive source that drives the circuit.
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Figure 3.1. The PEEC transfer function, exact and Padé
model of dimension n = 60.

Modified nodal analysis is used to set up the circuit equations, resulting
in a linear dynamical system of dimension N = 306. In turns out that a
Padé model of dimension n = 60 is sufficient to produce an almost exact
transfer function in the relevant frequency range s = 2π i ω, 0 ≤ ω ≤ 5×109.
The corresponding curves for |H(s)| and |H60(s)| are shown in Figure 3.1.
The Padé model shown in Figure 3.1 was computed with the PVL method
described in Section 5 below.

It is very tempting to compute Padé models by exploiting the defini-
tion (3.2) directly. More precisely, we would first explicitly generate the q(n)
moment matrices µ0, µ1, . . . , µq(n)−1, and then compute Hn and the system
matrices in the reduced-order model (2.6) and (2.7) from these moments.
In fact, for the special case m = p = 1 of single-input single-output sys-
tems, this approach is the asymptotic waveform evaluation (AWE) method
that was introduced to the circuit simulation community by Pillage and
Rohrer (1990). For surveys of AWE and its derivatives, we refer the reader
to Chiprout and Nakhla (1994) and Raghavan, Rohrer, Pillage, Lee, Bracken
and Alaybeyi (1993). However, computing Padé models directly from the
moments is extremely ill-conditioned, and consequently, such an approach is
not a viable numerical procedure in general. We discuss these shortcomings
of the AWE approach in more detail in Section 3.4 below.
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3.2. Reduction to a single matrix

Instead of employing explicit moment matching, the preferred way to com-
pute Padé models is to use Krylov-subspace techniques, such as a suitable
Lanczos-type process, as we will describe in Section 5. This becomes possi-
ble after the transfer function (2.8) is rewritten in terms of a single matrix
M , instead of the two matrices A and E. To this end, let

A − s0E = F1F2, where F1, F2 ∈ C
N×N , (3.3)

be any factorization of A− s0E. For example, the matrices A− s0E arising
in circuit simulation are large, but sparse, and are such that a sparse LU
factorization is feasible. In this case, the matrices F1 and F2 in (3.3) are
the lower and upper triangular factors, possibly with rows and columns
permuted due to pivoting, of such a sparse LU factorization of A − s0E.
Using (3.3), the transfer function (2.8) can be rewritten as follows:

H(s) = D + CT (sE − A)−1B

= D − CT (A − s0E − (s − s0)E)−1B

= D − LT (I − (s − s0)M)−1R, (3.4)

where

M := F−1
1 EF−1

2 , R := F−1
1 B, and L := F−T

2 C. (3.5)

Note that (3.4) only involves one N × N matrix, namely M , instead of the
two N × N matrices A and E in (2.8). This allows us to apply Krylov-
subspace methods to the single matrix M , with the N × m matrix R and
the N × p matrix L as blocks of right and left starting vectors.

3.3. Padé-type approximants

While Padé models often provide very good approximations in the frequency
domain, they also have undesirable properties. In particular, Padé models in
general do not preserve stability or passivity of the original system. However,
by relaxing the Padé-approximation property (3.2), it is often possible to
obtain stable or passive models. More precisely, we call a reduced-order
model (2.6) and (2.7) of state-space dimension n an nth Padé-type model (at
the expansion point s0) of the original system (2.1) and (2.2) if the Taylor
expansions about s0 of the transfer functions H and Hn of the original
system and the reduced-order system agree in a number of leading terms,
that is,

H(s) = Hn(s) + O
(
(s − s0)

q′
)
,

where 1 ≤ q′ < q(n). Recall that q(n) denotes the optimal approximation
order of a true Padé approximant.
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Unless m = p = 1, the transfer functions H and Hn are matrix-valued,
and thus the Padé and Padé-type approximants underlying Padé and Padé-
type models are so-called matrix-Padé and matrix-Padé-type approximants
in general.

3.4. Explicit moment matching

In this subsection, we restrict ourselves to the single-input single-output
case, m = p = 1. In this case, in (3.4), both R and L are vectors, and we
set r = R and l = L. Moreover, we assume that D = 0 in (3.4). Thus, (3.4)
reduces to the representation

H(s) = −lT (I − (s − s0)M)−1r. (3.6)

Note that H is a scalar-valued rational function. Correspondingly, the nth
Padé approximant Hn defined by (2.9) (with Dn = 0) and (3.2) is now also a
scalar-valued rational function with numerator and denominator polynomial
ϕn−1 and ψn of degree at most n − 1 and n, respectively. Instead of (2.9),
we represent Hn in terms of these polynomials:

Hn(s) =
ϕn−1(s)

ψn(s)
. (3.7)

There are 2n free parameters in (3.7), namely the coefficients of the polyno-
mials ϕn−1 and ψn. Except for certain degenerate cases, these parameters
can be chosen such that, in (3.2), the first 2n moments match:

H(s) = Hn(s) + O
(
(s − s0)

2n
)

=
2n−1∑

j=0

µj (s − s0)
j + O

(
(s − s0)

2n
)
.

Here, the {µj} are the moments defined by the expansion (3.1). Using the
representation (3.6) of H, the moments can be expressed as follows:

µj = −lT M jr, j = 0, 1, 2, . . . . (3.8)

The standard approach to computing Hn is based on the representa-
tion (3.7) and on explicit moment generation via (3.8). First, we use (3.8)
to compute the leading 2n moments,

µ0, µ1, . . . , µ2n−1, (3.9)

of H, and from these, we then generate the coefficients of the polynomials
ϕn−1 and ψn in (3.7) by solving a system of linear equations with a Hankel
matrix whose entries are the moments (3.9). This standard approach to
computing Hn is employed in the AWE method (Pillage and Rohrer 1990).
However, computing Padé approximants using explicit moment computa-
tions is inherently numerically unstable, and indeed, in practice, this ap-
proach can be employed in a meaningful way only for very moderate values
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Figure 3.2. Results for simulation of voltage gain
with AWE.

of n, such as n ≤ 10; see Feldmann and Freund (1995a). As we will describe
in more detail in Section 5, the numerical problems with AWE can eas-
ily be remedied by exploiting the Lanczos–Padé connection (Gragg 1974)
and generating the Padé approximant Hn via the classical Lanczos pro-
cess (Lanczos 1950). This approach was first introduced in Feldmann and
Freund (1994) as the Padé via Lanczos (PVL) method; see also Gallivan,
Grimme and Van Dooren (1994) and Feldmann and Freund (1995a).

While AWE and PVL are mathematically equivalent, their behaviour
when run on an actual computer can be vastly different. The reason is that
AWE is a numerically unstable algorithm and thus susceptible to round-
off errors caused by finite-precision arithmetic. We illustrate the numerical
differences between AWE and PVL with a circuit example taken from Feld-
mann and Freund (1994, 1995a). The circuit simulated here is a voltage
filter, where the frequency range of interest is 1 ≤ ω ≤ 1010. This example
was first run with AWE, and in Figure 3.2 we show the computed function
|Hn(i ω)|, for n = 2, 5, 8, together with the exact function |H(i ω)|, each for
the frequency range 1 ≤ ω ≤ 1010. Note that H8 has clearly not yet con-
verged to H. On the other hand, it turned out that the {Hn} were hardly
changing any more for n ≥ 8, and in particular, AWE never converged in
this example. In Figure 3.3 we show the computed results obtained with
PVL for n = 2, 8, 28, together with the exact function |H|. Note that the
results for n = 8 (the dotted curves) in Figures 3.1 and 3.2 are vastly dif-
ferent, although they both correspond to the same function H8. The reason
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Figure 3.3. Results for simulation of voltage gain
with PVL.

for this is that AWE is numerically unstable, while PVL generates H8 sta-
bly. Furthermore, note that PVL converges, with the computed 28th Padé
approximant being practically identical to H.

The main reason for the numerical instability of AWE is the explicit gener-
ation of the moments (3.9) by means of the formula (3.8). This computation
is usually done as follows. We first generate the 2n vectors

r, M r, M2 r, . . . , M2n−1 r, (3.10)

and then obtain (3.9) by computing the inner products

µj = lT · (M j r), j = 0, 1, . . . , 2n − 1, (3.11)

of l with (3.10). An alternative is first to generate the vectors

r, M r, M2 r, . . . , Mn−1 r and l, MT l, (MT )2 l, . . . , (MT )n−1 l, (3.12)

and then to obtain (3.9) by computing the inner products

µ2j =
(
(MT )j l

)T
· (M j r) and µ2j+1 =

(
(MT )j l

)T
·
(
M j+1 r

)
(3.13)

for j = 0, 1, . . . , n − 1. The problem is that the vectors (3.10) quickly con-
verge to an eigenvector corresponding to a dominant eigenvalue of M . As a
result, in finite-precision arithmetic, the moments µj computed via (3.11),
even for rather moderate values of j, contain only information about this
dominant eigenvalue. The Padé approximant Hn generated from the mo-
ments thus contains only information about part of the spectrum of M .
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The transfer function H, however, in general depends on all eigenvalues of
M , and not just the dominant ones. This is the reason why, for AWE, the
computed Hn usually does not converge to the transfer function H. The
alternative approach suffers from the same problem since the two sequences
of vectors in (3.12) quickly converge to a right, respectively left, eigenvector
corresponding to a dominant eigenvalue of M .

Note that the space spanned by the first set of vectors in (3.12) is just the
nth right Krylov subspace

Kn(M, r) := span{ r, M r, M2 r, . . . , Mn−1 r } (3.14)

induced by the matrix M and the right starting vector r. Similarly, the
second set of vectors in (3.12) spans the nth left Krylov subspace

Kn(MT , l) := span{ l, MT l, (MT )2 l, . . . , (MT )n−1 l } (3.15)

induced by the matrix MT and the left starting vector l. While Krylov
subspaces are very useful for large-scale matrix computations, the vectors in
the definitions (3.14) and (3.15) are in general unsuitable as basis vectors.
Indeed, as we just mentioned, they quickly converge, and in particular, they
quickly become almost linearly dependent. The remedy is to construct more
suitable basis vectors

v1, v2, . . . , vn, . . . , and w1, w2, . . . , wn, . . . , (3.16)

such that, for all n = 1, 2, . . . ,

Kn(M, r) = span{ v1, v2, . . . , vn } (3.17)

and

Kn(MT , l) = span{w1, w2, . . . , wn }. (3.18)

There are two main approaches for constructing basis vectors (3.16), the
Lanczos algorithm and the Arnoldi process, which will be discussed in Sec-
tions 5 and 6, respectively.

Using the basis vectors (3.16), the explicit moment computations can now
easily be avoided. Indeed, instead of the moments (3.9), we now compute
so-called modified moments

wT
j vj and wT

j M vj , j = 1, 2, . . . , n. (3.19)

In view of (3.17), (3.18), (3.14), (3.15), and (3.13), the modified moments
(3.19) contain the very same information as the moments (3.9), and for each
j = 0, 1, . . . , 2n−1, the jth moment µj can be expressed as a suitable linear
combination of the numbers (3.19).
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4. Stability and passivity

In this section, we discuss the concepts of stability and passivity of linear
dynamical systems.

4.1. Stability

An important property of linear dynamical systems is stability. An actual
physical system needs to be stable in order to function properly. If a linear
dynamical system (2.1) and (2.2) is used as a description of such a physical
system, then clearly it should also be stable. Moreover, when a system (2.1)
and (2.2) is replaced by a reduced-order model that is then used in a time-
domain analysis, the reduced-order model also needs to be stable.

In this subsection, we present a brief discussion of stability of linear de-
scriptor systems. For a more general survey of the various concepts of stabil-
ity of dynamical systems, we refer the reader to Anderson and Vongpanitlerd
(1973) and Willems (1970).

A descriptor system of the form (2.1) and (2.2) is said to be stable if its
free-response, that is, the solutions x(t), t ≥ 0, of

E
dx

dt
= Ax,

x(0) = x0,

remain bounded as t → ∞ for any possible initial vector x0. Recall from the
discussion in Section 2.1 that, for singular E, there are certain restrictions
on the possible initial vectors x0.

Stability can easily be characterized in terms of the finite eigenvalues of
the matrix pencil A− sE; see, e.g., Masubuchi, Kamitane, Ohara and Suda
(1997). More precisely, we have the following theorem.

Theorem 4.1. The descriptor system (2.1) and (2.2) is stable if and only
if the following two conditions are satisfied:

(i) all finite eigenvalues s ∈ C of the matrix pencil A−sE satisfy Re s ≤ 0;

(ii) all finite eigenvalues s of A − sE with Re s = 0 are simple.

We stress that, in view of Theorem 4.1, the infinite eigenvalues of the
matrix pencil A − sE have no effect on stability. The reason is that these
infinite eigenvalues result only in impulsive motions, which go to zero as
t → ∞.

Recall that the transfer function H of the descriptor system (2.1) and (2.2)
is of the form

H(s) = D + CT (sE − A)−1B, (4.1)

where A, E ∈ R
N×N , B ∈ R

N×m, C ∈ R
N×m, and D ∈ R

p×m. (4.2)
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Note that any pole of H is necessarily an eigenvalue of the matrix pencil
A − sE. Hence, it is tempting to determine stability via the poles of H.
However, in general, not all eigenvalues of A − sE are poles of H. For
example, consider the system

dx

dt
=

[
1 0
0 −1

]
x +

[
0
1

]
u(t),

y(t) =
[
1 1

]
x(t),

which is taken from Anderson and Vongpanitlerd (1973). The pencil asso-
ciated with this system is

A − sI =

[
1 − s 0

0 −1 − s

]
.

Its eigenvalues are ±1, and hence this system is unstable. The transfer
function H(s) = 1/(s+1), however, only has the ‘stable’ pole −1. Therefore,
checking conditions (i) and (ii) of Theorem 4.1 only for the poles of H is,
in general, not enough to guarantee stability. In order to infer stability of
the system (2.1) and (2.2) from the poles of its transfer function, we need
an additional condition, which we formulate next.

Let H be a given (p×m)-matrix-valued rational function. Any represen-
tation of H of the form (4.1) with matrices (4.2) is called a realization of H.
Furthermore, a realization (4.1) of H is said to be minimal if the dimension
N of the matrices (4.2) is as small as possible. We will also say that the
state-space description (2.1) and (2.2) is a minimal realization if its transfer
function (4.1) is a minimal realization.

The following theorem is the well-known characterization of minimal re-
alizations in terms of conditions on the matrices (4.2); see, e.g., Verghese
et al. (1981). We also refer the reader to the related results on controlla-
bility, observability, and minimal realizations of descriptor systems given in
Chapter 2 of Dai (1989).

Theorem 4.2. Let H be a (p × m)-matrix-valued rational function given
by a realization (4.1). Then, (4.1) is a minimal realization of H if and only
if the matrices (4.2) satisfy the following five conditions:

(i) rank
[
A − sE B

]
= N for all s ∈ C (finite controllability);

(ii) rank
[
E B

]
= N (infinite controllability);

(iii) rank
[
AT − sET C

]
= N for all s ∈ C (finite observability);

(iv) rank
[
ET C

]
= N (infinite observability);

(v) A ker(E) ⊆ Im(E) (absence of nondynamic modes).

For descriptor systems given by a minimal realization, stability can indeed
be checked via the poles of its transfer function.
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Theorem 4.3. Let (2.1) and (2.2) be a minimal realization of a descrip-
tor system, and let H be its transfer function (4.1). Then, the descriptor
system (2.1) and (2.2) is stable if and only if all finite poles si of H sat-
isfy Re si ≤ 0 and any pole with Re si = 0 is simple.

4.2. Passivity

In circuit simulation, reduced-order modelling is often applied to large pas-
sive linear subcircuits, such as RCL networks consisting of only resistors,
capacitors, and inductors. When reduced-order models of such subcircuits
are used within a simulation of the whole circuit, stability of the overall
simulation can only be guaranteed if the reduced-order models preserve the
passivity of the original subcircuits; see, e.g., Chirlian (1967), Rohrer and
Nosrati (1981), and Lozano, Brogliato, Egeland and Maschke (2000). There-
fore, it is important to have techniques to check the passivity of a given
reduced-order model.

Roughly speaking, a system is passive if it does not generate energy. For
descriptor systems of the form (2.1) and (2.2), passivity is equivalent to
positive realness of the transfer function. Moreover, such systems can only
be passive if they have identical numbers of inputs and outputs. Thus, for
the remainder of this subsection, we assume that m = p. Then, a system
described by (2.1) and (2.2) is passive, that is, it does not generate energy, if
and only if its transfer function (4.1) is positive real ; see, e.g., Anderson and
Vongpanitlerd (1973). A precise definition of positive realness is as follows.

Definition 1. An (m × m)-matrix-valued function H : C �→ (C∪∞)m×m

is called positive real if the following three conditions are satisfied:

(i) H is analytic in C+ := { s ∈ C | Re s > 0 };

(ii) H(s) = H(s) for all s ∈ C;

(iii) H(s) + (H(s))H � 0 for all s ∈ C+.

In Definition 1 and hereafter, the notation M � 0 means that the matrix
M is Hermitian positive semi-definite. Similarly, M � 0 means that M is
Hermitian negative semi-definite.

For transfer functions H of the form (4.1), condition (ii) of Definition 1 is
always satisfied since the matrices (4.2) are assumed to be real. Furthermore,
condition (i) simply means that H cannot have poles in C+, and this can
be checked easily. For the special case m = 1 of scalar-valued functions H,
condition (iii) states that the real part of H(s) is nonnegative for all s with
nonnegative real part. In order to check this condition, it is sufficient to
show that the real part of H(s) is nonnegative for all purely imaginary s.
This can be done by means of relatively elementary means. For example,
in Bai and Freund (2000), a procedure based on eigenvalue computations
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is proposed. For the general matrix-valued case, m ≥ 1, however, checking
condition (iii) is much more involved. One possibility is to employ a suitable
extension of the classical positive real lemma (Anderson 1967, Anderson
and Vongpanitlerd 1973, Zhou, Doyle and Glover 1996) that characterizes
positive realness of regular linear systems via the solvability of certain linear
matrix inequalities (LMIs). Such a version of the positive real lemma for
general descriptor systems is stated in Theorem 4.4 below.

We remark that any matrix-valued rational function H has an expansion
about s = ∞ of the form

H(s) =

j0∑

j=−∞

Mjs
j , (4.3)

where j0 ≥ 0 is an integer. Moreover, the function H has a pole at s = ∞
if and only if j0 ≥ 1 and Mj0 = 0 in (4.3).

A suitable extension of the classical positive real lemma for regular sys-
tems to descriptor systems can now be stated as follows.

Theorem 4.4. (Positive real lemma for descriptor systems) Let H
be a real (m × m)-matrix-valued rational function of the form (4.1) with
matrices (4.2).

(a) (Sufficient condition.) If the LMIs
[
AT X + XT A XT B − C
BT X − CT −D − DT

]
� 0 and ET X = XT E � 0 (4.4)

have a solution X ∈ R
N×N , then H is positive real.

(b) (Necessary condition.) Suppose that (4.1) is a minimal realization of
H and that the matrix M0 in the expansion (4.3) satisfies

(D − M0) + (D − M0)
T � 0. (4.5)

If H is positive real, then there exists a solution X ∈ R
N×N of the

LMIs (4.4).

A proof of Theorem 4.4 can be found in Freund and Jarre (2000).
The result of Theorem 4.4 allows us to check positive realness by solving

semi-definite programming problems of the form (4.4). Note that there are
N2 unknowns in (4.4), namely the entries of the N ×N matrix X. Problems
of the form (4.4) can be tackled with interior-point methods; see, e.g., Boyd,
El Ghaoui, Feron and Balakrishnan (1994) and Freund and Jarre (2003).
However, the computational complexity of these methods grows quickly with
N , and thus, these methods are viable only for rather small values of N .
On the other hand, it is usually known whether a given system is passive,
and the need to numerically check passivity mainly arises for reduced-order
models of a given passive model. In this case, the dimension N of the
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semi-definite programming problem (4.4) is equal to the dimension of the
reduced-order model, which is usually small enough for techniques based on
Theorem 4.4 to become feasible.

For the special case E = I, the result of Theorem 4.4 is just the classical
positive real lemma (Anderson 1967, Anderson and Vongpanitlerd 1973,
Zhou et al. 1996). In this case, (4.4) reduces to the problem of finding a
symmetric positive semi-definite matrix X ∈ R

N×N such that
[
AT X + XA XB − C
BT X − CT −D − DT

]
� 0.

Moreover, if E = I, the condition (4.5) is always satisfied, since in this case
M0 = 0 and D + DT � 0.

4.3. Linear RCL subcircuits

In circuit simulation, an important special case of passive circuits is linear
subcircuits that consist only of resistors, capacitors, and inductors. Such
linear RCL subcircuits arise in the modelling of a circuit’s interconnect and
pin package; see, e.g., Cheng et al. (2000), Freund and Feldmann (1997,
1998), Kim, Gopal and Pillage (1994), and Pileggi (1995).

The equations describing linear RCL subcircuits are of the form (2.1)
and (2.2) with D = 0 and m = p. Furthermore, the equations can be
formulated such that the matrices A, E ∈ R

N×N in (2.1) are symmetric and
exhibit a block structure; see Freund and Feldmann (1996a, 1998). More
precisely, we have

A = AT =

[
−A11 A12

AT
12 0

]
and E = ET =

[
E11 0
0 −E22

]
, (4.6)

where the submatrices A11, E11 ∈ R
N1×N1 and E22 ∈ R

N2×N2 are symmetric
positive semi-definite, and N = N1 + N2. Note that, except for the special
case N2 = 0, the matrices A and E are indefinite. The special case N2 = 0
arises for RC subcircuits that contain only resistors and capacitors, but no
inductors.

If the RCL subcircuit is viewed as an m-terminal component with m
inputs and m = p outputs, then the matrices B and C in (2.1) and (2.2) are
identical and of the form

B = C =

[
B1

0

]
with B1 ∈ R

N1×m. (4.7)

In view of (4.6) and (4.7), the transfer function of such an m-terminal RCL
subcircuit is given by

H(s) = BT (sE − A)−1B, where A = AT , E = ET . (4.8)
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We call a transfer function H symmetric if it is of the form (4.8) with real
matrices A, E, and B.

We will also use the following nonsymmetric formulation of (4.8). Let J
be the block matrix

J =

[
IN1

0
0 −IN2

]
, (4.9)

where IN1
and IN2

are the N1×N1 and N2×N2 identity matrix, respectively.
Note that, by (4.7) and (4.9), we have B = JB. Using this relation, as

well as (4.6), we can rewrite (4.8) as follows:

H(s) = BT
(
sẼ − Ã

)
−1

B,

where Ã =

[
−A11 A12

−AT
12 0

]
, Ẽ =

[
E11 0
0 E22

]
.

(4.10)

In this formulation, the matrix Ã is no longer symmetric, but now

Ã + ÃT � 0 and Ẽ � 0. (4.11)

It turns out that the properties (4.11) are the key to ensure positive realness.
Indeed, in Freund (2000b), we established the following result.

Theorem 4.5. Let Ã, Ẽ ∈ R
N×N , and B ∈ R

N×m. Assume that Ã
and Ẽ satisfy (4.11), and that the matrix pencil Ã − sẼ is regular. Then,
the (m × m)-matrix-valued function

H(s) = BT
(
sẼ − Ã

)
−1

B

is positive real.

5. Approaches based on Lanczos-type methods

In this section, we discuss the use of Lanczos-type methods for the construc-
tion of Padé and Padé-type reduced-order models of time-invariant linear
dynamical systems.

5.1. Block Krylov subspaces

We consider general descriptor systems of the form (2.1) and (2.2). As
discussed in Section 3.2, the key to using Krylov-subspace techniques for
reduced-order modelling of such systems is to first replace the matrix pair
A and E by a single matrix M . To this end, let s0 ∈ C be any given point
such that the matrix A − s0E is nonsingular. Then, with M , R, and L
denoting the matrices defined in (3.5), the linear system (2.1) and (2.2) can
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be rewritten in the following form:

M
dx̃

dt
= (I + s0M) x̃ + Ru(t), (5.1)

y(t) = LT x̃(t) + Du(t). (5.2)

Here, x̃ := F2x, where F2 is the matrix from the factorization (3.3). Note
that M ∈ C

N×N , R ∈ C
N×m, and L ∈ C

N×p, where N is the state-space
dimension of the system, m is the number of inputs, and p is the number of
outputs.

The transfer function H of the rewritten system (5.1) and (5.2) is given
by (3.4). By expanding (3.4) about s0, we obtain

H(s) = D −
∞∑

j=0

LT M jR (s − s0)
j . (5.3)

Recall from Section 3 that Padé and Padé-type reduced-order models are
defined via the leading coefficients of an expansion of H about s0. In view
of (5.3), the jth coefficient of such an expansion can be expressed as follows:

−LT M jR = −
(
(M j−i)T L

)T (
M iR

)
, i = 0, 1, . . . , j. (5.4)

Notice that the factors on the right-hand side of (5.4) are blocks of the right
and left block Krylov matrices

[
R MR M2R · · · M iR · · ·

]

and
[

L MT L
(
MT

)2
L · · ·

(
MT

)k
L · · ·

]
,

(5.5)

respectively. As a result, all the information needed to generate Padé and
Padé-type reduced-order models is contained in the block Krylov matri-

ces (5.5). However, simply computing the blocks M iR and
(
MT

)i
L in (5.5)

and then generating the leading coefficients of the expansion (5.3) from these
blocks is not a viable numerical procedure. The reason is that, in finite-

precision arithmetic, as i increases, the blocks M iR and
(
MT

)i
L quickly

contain only information about the eigenspaces of the dominant eigenvalue
of M . Instead, we need to employ suitable Krylov-subspace methods that
generate numerically better basis vectors for the subspaces associated with
the block Krylov matrices (5.5).

Next, we give a formal definition of the subspaces induced by (5.5). For the
special case m = p = 1 of single-input single-output systems, the ‘blocks’
of the Krylov matrices (5.5) reduce to vectors, and the Krylov subspaces
spanned by these vectors are just the standard Krylov subspaces that we
introduced in (3.17) and (3.18). For the general case m, p ≥ 1 of multi-input
multi-output systems, however, the definition of subspaces induced by (5.5)
is more involved. First, note that each block M iR consists of m column
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vectors of length N . By scanning these column vectors of the right block
Krylov matrix in (5.5) from left to right and by deleting any column that is
linearly dependent on columns to its left, we obtain the deflated right block
Krylov matrix

[
R1 MR2 M2R3 · · · M imax−1Rimax

]
. (5.6)

This process of detecting and deleting the linearly dependent columns is
called exact deflation. We remark that the matrix (5.6) is finite, since at
most N of the column vectors can be linearly independent. Furthermore, a
column M ir being linearly dependent on columns to its left in (5.5) implies
that any column M i′r, i′ ≥ i, is linearly dependent on columns to its right.
Therefore, in (5.6), for each i = 1, 2, . . . , imax, the matrix Ri is a submatrix
of Ri−1, where, for i = 1, we set R0 = R.

Let mi denote the number of columns of Ri. The matrix (5.6) thus has

n(r)
max := m1 + m2 + · · · + mimax

,

columns. For each integer n with 1 ≤ n ≤ n
(r)
max, we define the nth right block

Krylov subspace Kn(M, R) (induced by M and R) as the subspace spanned
by the first n columns of the deflated right block Krylov matrix (5.6).

Analogously, by deleting the linearly independent columns of the left block
Krylov matrix in (5.5), we obtain a deflated left block Krylov matrix of the
form [

L1 MT L2

(
MT

)2
L3 · · ·

(
MT

)imax−1
Lkmax

]
. (5.7)

Let n
(l)
max be the number of columns of the matrix (5.7). Then, for each

integer n with 1 ≤ n ≤ n
(l)
max, we define the nth left block Krylov subspace

Kn(MT , L) (induced by MT and L) as the subspace spanned by the first n
columns of the deflated left block Krylov matrix (5.7).

For a more detailed discussion of block Krylov subspaces and deflation, we
refer the reader to Aliaga, Boley, Freund and Hernández (2000) and Freund
(2000b).

Next, we discuss reduced-order modelling approaches that employ Lanczos
and Lanczos-type methods for the construction of suitable basis vectors for
the right and left block Krylov subspaces Kn(M, R) and Kn(MT , L).

5.2. The MPVL algorithm

For the special case m = p = 1 of single-input single-output linear dynam-
ical systems, each of the ‘blocks’ R and L only consists of a single vector,
say r and l, and Kn(M, r) and Kn(MT , l) are just the standard nth right
and left Krylov subspaces induced by single vectors. The classical Lanc-
zos process (Lanczos 1950) is a well-known procedure for computing two
sets of bi-orthogonal basis vectors for Kn(M, r) and Kn(MT , l). Moreover,
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these vectors are generated by means of three-term recurrences the coeffi-
cients of which define a tridiagonal matrix Tn. It turns out that Tn contains
all the information that is needed to set up an nth Padé reduced-order
model of a given single-input single-output time-invariant linear dynami-
cal system. The associated computational procedure is called the Padé via
Lanczos (PVL) algorithm (Feldmann and Freund 1994, 1995a).

Here, we describe in some detail an extension of the PVL algorithm to the
case of general m-input p-output time-invariant linear dynamical systems.
The underlying block Krylov subspace method is the nonsymmetric band
Lanczos algorithm (Freund 2000a) for constructing two sets of right and left
Lanczos vectors,

v1, v2, . . . , vn and w1, w2, . . . , wn, (5.8)

respectively. These vectors span the nth right and left block Krylov sub-
spaces (induced by M and R, and MT and L, respectively):

span{ v1, v2, . . . , vn } = Kn(M, R)

and span{w1, w2, . . . , wn } = Kn(MT , L).
(5.9)

Moreover, the vectors (5.8) are constructed to be bi-orthogonal:

wT
j vk =

{
0 if j = k,

δj if j = k,
for all j, k = 1, 2, . . . , n. (5.10)

It turns out that the Lanczos vectors (5.8) can be constructed by means of
recurrence relations of length at most m+ p+1. The recurrence coefficients

for the first n right Lanczos vectors define an n × n matrix T
(pr)
n that is

‘essentially’ a band matrix with total bandwidth m + p + 1. Similarly, the
recurrence coefficients for the first n left Lanczos vectors define an n × n
band matrix T̃

(pr)
n with total bandwidth m + p + 1. For a more detailed

discussion of the structure of T
(pr)
n and T̃

(pr)
n , we refer the reader to Aliaga

et al. (2000) and Freund (2000a).
Algorithm 5.1 below gives a complete description of the numerical pro-

cedure that generates the Lanczos vectors (5.8) with properties (5.9) and
(5.10). In order to obtain a Padé reduced-order model based on this algo-
rithm, we do not need the Lanczos vectors themselves, but rather the matrix

of right recurrence coefficients T
(pr)
n , the matrices ρ

(pr)
n and η

(pr)
n that con-

tain the recurrence coefficients from processing the starting blocks R and L,
respectively, and the diagonal matrix

∆n = diag (δ1, δ2, . . . , δn),

whose diagonal entries are the δj ’s from (5.10). The following algorithm

produces the matrices T
(pr)
n , ρ

(pr)
n , η

(pr)
n , and ∆n as output.



290 R. W. Freund

Algorithm 5.1. (Nonsymmetric band Lanczos algorithm)

INPUT: A matrix M ∈ C
N×N ;

A block of m right starting vectors R =
[
r1 r2 · · · rm

]
∈

C
N×m;

A block of p left starting vectors L =
[
l1 l2 · · · lp

]
∈ C

N×p.

OUTPUT: The n × n Lanczos matrix T
(pr)
n , and the matrices ρ

(pr)
n , η

(pr)
n ,

and ∆n.

(0) For k = 1, 2, . . . , m, set v̂k = rk.
For k = 1, 2, . . . , p, set ŵk = lk.
Set mc = m, pc = p, and Iv = Iw = ∅.

For n = 1, 2, . . . , until convergence or mc = 0 or pc = 0 or δn = 0 do:

(1) (If necessary, deflate v̂n.)
Compute ‖v̂n‖2.
Decide if v̂n should be deflated. If yes, do the following:

(a) Set v̂defl
n−mc

= v̂n and store this vector. Set Iv = Iv ∪ {n − mc }.

(b) Set mc = mc − 1. If mc = 0, set n = n − 1 and stop.

(c) For k = n, n + 1, . . . , n + mc − 1, set v̂k = v̂k+1.

(d) Repeat all of step (1).

(2) (If necessary, deflate ŵn.)
Compute ‖ŵn‖2.
Decide if ŵn should be deflated. If yes, do the following:

(a) Set ŵdefl
n−pc

= ŵn and store this vector. Set Iw = Iw ∪ {n − pc }.

(b) Set pc = pc − 1. If pc = 0, set n = n − 1 and stop.

(c) For k = n, n + 1, . . . , n + pc − 1, set ŵk = ŵk+1.

(d) Repeat all of step (2).

(3) (Normalize v̂n and ŵn to obtain vn and wn.)
Set

tn,n−mc
= ‖v̂n‖2, t̃n,n−pc

= ‖ŵn‖2,

vn =
v̂n

tn,n−mc

, and wn =
ŵn

t̃n,n−pc

.

(4) (Compute δn and check for possible breakdown.)

Set δn = wT
n vn. If δn = 0, set n = n − 1 and stop.
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(5) (Orthogonalize the right candidate vectors against wn.)
For k = n + 1, n + 2, . . . , n + mc − 1, set

tn,k−mc
=

wT
n v̂k

δn
and v̂k = v̂k − vn tn,k−mc

.

(6) (Orthogonalize the left candidate vectors against vn.)
For k = n + 1, n + 2, . . . , n + pc − 1, set

t̃n,k−pc
=

ŵT
k vn

δn
and ŵk = ŵk − wn t̃n,k−pc

.

(7) (Advance the right block Krylov subspace to get v̂n+mc
.)

(a) Set v̂n+mc
= M vn.

(b) For k ∈ Iw (in ascending order), set

σ̃ =
(
ŵdefl

k

)T
vn, t̃n,k =

σ̃

δn
,

and, if k > 0, set

tk,n =
σ̃

δk
and v̂n+mc

= v̂n+mc
− vk tk,n.

(c) Set kv = max{ 1, n − pc }.

(d) For k = kv, kv + 1, . . . , n − 1, set

tk,n = t̃n,k
δn

δk
and v̂n+mc

= v̂n+mc
− vk tk,n.

(e) Set

tn,n =
wT

n v̂n+mc

δn
and v̂n+mc

= v̂n+mc
− vn tn,n.

(8) (Advance the left block Krylov subspace to get ŵn+pc
.)

(a) Set ŵn+pc
= MT wn.

(b) For k ∈ Iv (in ascending order), set

σ = wT
n v̂defl

k , tn,k =
σ

δn
,

and, if k > 0, set

t̃k,n =
σ

δk
and ŵn+pc

= ŵn+pc
− wk t̃k,n.

(c) Set kw = max{ 1, n − mc }.

(d) For k = kw, kw + 1, . . . , n − 1, set

t̃k,n = tn,k
δn

δk
and ŵn+pc

= ŵn+pc
− wk t̃k,n.
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(e) Set

t̃n,n = tn,n and ŵn+pc
= ŵn+pc

− wn t̃n,n.

(9) Set

T (pr)
n =

[
ti,k

]
i,k=1,2,...,n

,

ρ(pr)
n =

[
ti,k−m

]
i=1,2,...,n; k=1,2,...,kρ

where kρ = m + min{ 0, n − mc },

η(pr)
n =

[
t̃i,k−p

]
i=1,2,...,n; k=1,2,...,kη

where kη = p + min{ 0, n − pc },

∆n = diag
(
δ1, δ2, . . . , δn

)
.

(10) Check if n is large enough. If yes, stop.

Remark 1. When applied to single starting vectors, that is, for the spe-
cial case m = p = 1, Algorithm 5.1 reduces to the classical nonsymmetric
Lanczos process (Lanczos 1950).

Remark 2. It can be shown that, at step n of Algorithm 5.1, exact de-
flation of a vector in the right, respectively left, block Krylov matrix (5.5)
occurs if and only if v̂n = 0, respectively ŵn = 0, in step (1), respectively
step (2). Therefore, to run Algorithm 5.1 with exact deflation only, we de-
flate v̂n if ‖v̂n‖2 = 0 in step (1), and we deflate ŵn if ‖ŵn‖2 = 0 in step (2). In
finite-precision arithmetic, however, so-called inexact deflation is employed.
This means that, in step (1), v̂n is deflated if ‖v̂n‖2 ≤ ε, and, in step (2),
ŵn is deflated if ‖ŵn‖2 ≤ ε, where ε = ε(M) > 0 is a suitably chosen small
constant.

Remark 3. The occurrence of δn = 0 in step (4) of Algorithm 5.1 is
called a breakdown. In finite-precision arithmetic, in step (4) we should
also check for near-breakdowns, that is, if δn ≈ 0. In general, it cannot be
excluded that breakdowns or near-breakdowns occur, although they are very
unlikely. Furthermore, by using so-called look-ahead techniques, it is possible
to remedy the problem of possible breakdowns or near-breakdowns. For the
sake of simplicity, we have stated the band Lanczos algorithm without look-
ahead only. A look-ahead version of Algorithm 5.1 is described in Aliaga
et al. (2000).

The matrices T
(pr)
n , ρ

(pr)
n , and η

(pr)
n produced by Algorithm 5.1 can be

viewed as oblique projections of the input data M , R, and L onto the right
block Krylov subspace Kn(M, R) and orthogonally to the left block Krylov
subspace Kn(MT , L). To give a precise statement of these projection prop-
erties, we let

Vn :=
[
v1 v2 · · · vn

]
and Wn :=

[
w1 w2 · · · wn

]
(5.11)

denote the matrices whose columns are the first n right and left Lanczos
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vectors, respectively. Then the matrices T
(pr)
n , ρ

(pr)
n , η

(pr)
n , and ∆n generated

by Algorithm 5.1 are related to the input data M , R, and L as follows:

T
(pr)
n = ∆−1

n W T
n MVn,

ρ
(pr)
n = ∆−1

n W T
n R,

η
(pr)
n = ∆−T

n V T
n L,

∆n = W T
n Vn.

(5.12)

The relations (5.12) can be employed to set up a reduced-order model of
dimension n of the linear system (5.1) and (5.2). To this end, we restrict the
state vector x̃(t) in (5.1) and (5.2) to vectors in Kn(M, R). In view of (5.11),
these restricted vectors can be written as

x̃(t) = Vnz(t), (5.13)

where z(t) has length n. By applying the oblique projections stated in (5.12)
to the linear dynamical system (5.1) and (5.2), and by using (5.13), we obtain
the following reduced-order model:

T (pr)
n

dz

dt
=

(
I + s0T

(pr)
n

)
z + ρ(pr)

n u(t), (5.14)

y(t) =
(
η(pr)

n

)T
∆nz(t) + Du(t). (5.15)

Note that the transfer function of this reduced-order model is given by

Hn(s) = D −
(
η(pr)

n

)T
∆n

(
I − (s − s0)T

(pr)
n

)
−1

ρ(pr)
n . (5.16)

The matrix-Padé via Lanczos (MPVL) algorithm (Feldmann and Freund
1995b, Freund 1995) consists of applying Algorithm 5.1 to the matrices M ,

R, and L defined in (3.5), and running it for n steps. The matrices T
(pr)
n ,

ρ
(pr)
n , η

(pr)
n , and ∆n produced by Algorithm 5.1 are then used to set up

the reduced-order model (5.14) and (5.15) of the original linear dynamical
system (2.1) and (2.2).

It turns out that the reduced-order model (5.14) and (5.15) is indeed a
matrix-Padé model of the original system.

Theorem 5.2. (Matrix-Padé model) Suppose that Algorithm 5.1 is run
with exact deflation only and that n ≥ max{m, p}. Then, the reduced-order
model (5.14) and (5.15) is a matrix-Padé model of the linear dynamical
system (2.1) and (2.2). More precisely, the Taylor expansions about s0

of the transfer functions H (2.8) and Hn (5.16) agree to as many leading
coefficients as possible, that is,

H(s) = Hn(s) + O
(
(s − s0)

q(n)
)
,



294 R. W. Freund

where q(n) is as large as possible. In particular,

q(n) ≥

⌊
n

m

⌋
+

⌊
n

p

⌋
.

A proof of Theorem 5.2 is given in Freund (1995). Earlier related results,
which required additional assumptions, can be found in de Villemagne and
Skelton (1987) and Feldmann and Freund (1995b).

5.3. A connection with shifted Krylov-subspace solvers

The representation (3.4) of the transfer function H suggests to employ the
machinery of shifted Krylov-subspace methods (Freund 1993) for reduced-
order modelling. Indeed, let us define the new variable

σ(s) :=
1

s − s0
, s ∈ C, s = s0. (5.17)

Using (5.17), we can rewrite (3.4) as follows:

H(s) = D + σ(s)LT (M − σ(s) I)−1R, s = s0. (5.18)

For any σ ∈ C that is not an eigenvalue of the matrix M , let X(σ) denote
the unique solution of the block linear system

(
M − σI

)
X(σ) = R. (5.19)

By (5.18) and (5.19), we have

H(s) = D + σ(s)LT X (σ(s)) (5.20)

for any s ∈ C such that s = s0 and σ(s) is not an eigenvalue of M .
In view of (5.20), we can compute the values H(s) via solution of block

linear systems of the form (5.19). Furthermore, (5.19) is a family of shifted
systems, that is, the coefficient matrices of (5.19) differ from the fixed matrix
M only by scalar multiples of the identity matrix. It is well known that
Krylov-subspace methods for the solution of linear equations can exploit
this shift structure; see, e.g., Freund (1993) and the references given there.
The basic observation is that Krylov subspaces are invariant under additive
shifts by scalar multiples of the identity matrix. The underlying Krylov-
subspace method thus has to be run only once, and approximate solutions
of any shifted system can then be obtained by solving small shifted problems.

Next, we describe one such method, namely a variant of the block bi-
conjugate gradient (BCG) method (O’Leary 1980), in a little more detail.
Our variant of block BCG is based on the band Lanczos method. Recall
that, after n steps, Algorithm 5.1 (applied to the matrices M , R, and L)

has generated the matrices T
(pr)
n , ρ

(pr)
n , and η

(pr)
n and that these satisfy (5.12).

In terms of these matrices, the nth block BCG iterate, Xn(σ), for the block



Model reduction methods based on Krylov subspaces 295

system (5.19) can be expressed as follows:

Xn(σ) = VnZn(σ), (5.21)

where Zn(σ) is the solution of the shifted block Lanczos system
(
T (pr)

n − σIn

)
Zn(σ) = ρ(pr)

n . (5.22)

Recall that Vn is the matrix of right Lanczos vectors defined in (5.11). Also,
note that the coefficient matrix of the system (5.22) is of size n × n. By
choosing σ = σ(s) and inserting the associated block BCG iterate into (5.20),
we obtain the approximation

H(n)(s) := D + σ(s)LT Xn (σ(s)) ≈ H(s) (5.23)

for the value of the transfer function H at s. Using (5.21), (5.22), (5.12),
and (5.17), it readily follows from (5.23) that

H(n)(s) := D + σ(s)
(
η

(pr)
n

)T
∆n

(
T

(pr)
n − σ(s)

)
−1

ρ
(pr)
n

= D −
(
η

(pr)
n

)T
∆n

(
I − (s − s0)T

(pr)
n

)
−1

ρ
(pr)
n .

(5.24)

By comparing (5.24) and (5.16), we conclude that

Hn(s) = H(n)(s). (5.25)

This means that computing approximate values of H(s) via n iterations of
the shifted block BCG method is equivalent to matrix-Padé approximation.

Of course, this equivalence no longer holds true when shifted variants of
other Krylov-subspace solvers, such as block QMR (Freund and Malhotra
1997), are employed.

5.4. The SyMPVL algorithm

A disadvantage of Padé models is that, in general, they do not preserve the
stability and possibly passivity of the original linear dynamical system. In
part, these problems can be overcome by means of suitable post-processing
techniques, such as the ones described in Bai, Feldmann and Freund (1998),
and Bai and Freund (2001a). However, the reduced-order models obtained
by post-processing of Padé models are necessarily no longer optimal in the
sense of Padé approximation. Furthermore, post-processing techniques are
not guaranteed to result always in stable and possibly passive reduced-order
models.

For special cases, however, Padé models can be shown to be stable and
passive. In particular, this is the case for linear dynamical systems describing
RC subcircuits, RL subcircuits, and LC subcircuits; see Bai and Freund
(2001b) and Freund and Feldmann (1996a, 1997, 1998).
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Next, we describe the SyMPVL algorithm (Freund and Feldmann 1996a,
1997, 1998), which is a special version of MPVL tailored to linear RCL
subcircuits.

Recall from Section 4.3 that linear RCL subcircuits can be described by
linear dynamical systems (2.1) and (2.2) with D = 0, symmetric matrices A
and E of the form (4.6), and matrices B = C of the form (4.7). Furthermore,
the transfer function (4.8), H, is symmetric.

We now assume that the expansion point s0 for the Padé approximation
is chosen to be real and nonnegative, that is, s0 ≥ 0. Together with (4.6) it
follows that the matrix A−s0E is symmetric indefinite, with N1 nonpositive
and N2 nonnegative eigenvalues. Thus, A − s0E admits a factorization of
the following form:

A − s0E = −F1JF T
1 , (5.26)

where J is the block matrix defined in (4.9). Instead of the general factor-
ization (3.3), we now use (5.26). By (5.26) and (3.5), the matrices M , R,
and L are then of the following form:

M = F−1
1 EF−T

1 J, R = F−1
1 B, and L = −JF−1

1 C.

Since E = ET and B = C, it follows that

JM = MT J and L = −JR.

This means that M is J-symmetric and the left starting block L is (up to
its sign) the J-multiple of the right starting block R. These two properties
imply that all the right and left Lanczos vectors generated by the band
Lanczos Algorithm 5.1 are J-multiples of each other:

wj = Jvj for all j = 1, 2, . . . , n.

Consequently, Algorithm 5.1 simplifies, in that only the right Lanczos vec-
tors need to be computed. The resulting version of MPVL for computing
matrix-Padé models of RCL subcircuits is just the SyMPVL algorithm. The
computational costs of SyMPVL are half of that of the general MPVL algo-
rithm.

Let H
(1)
n denote the matrix-Padé model generated by SyMPVL after n

Lanczos steps. For general RCL subcircuits, however, H
(1)
n will not preserve

the passivity of the original system.
An additional reduced-order model that is guaranteed to be passive can

be obtained as follows, provided that all right Lanczos vectors are stored.
Let

Vn =
[
v1 v2 · · · vn

]

denote the matrix that contains the first n right Lanczos vectors as columns.
Then, by projecting the matrices in the representation (4.10) of the transfer
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function H of the original RCL subcircuit onto the columns of Vn, we obtain
the following reduced-order transfer function:

H(2)
n (s) =

(
V T

n B
)T (

sV T
n ẼVn − V T

n ÃVn

)
−1

V T
n B. (5.27)

The passivity of the original RCL subcircuit, together with Theorem 4.5,

implies that the reduced-order model defined by H
(2)
n is indeed passive.

Furthermore, in Freund (2000b), it is shown that H
(2)
n is a matrix-Padé-type

approximation of the original transfer function and that, at the expansion

point s0, H
(2)
n matches half as many leading coefficients of H as the matrix-

Padé approximant H
(1)
n .

Next, we illustrate the behaviour of SyMPVL with two circuit examples.

5.5. A package model

The first example that arises is the analysis of a 64-pin package model used
for an RF integrated circuit. Only eight of the package pins carry signals,
the rest being either unused or carrying supply voltages. The package is
characterized as a passive linear dynamical system with m = p = 16 inputs
and outputs, representing 8 exterior and 8 interior terminals. The package
model is described by approximately 4000 circuit elements, resistors, ca-
pacitors, inductors, and inductive couplings, resulting in a linear dynamical
system with a state-space dimension of about 2000.

In Freund and Feldmann (1997), SyMPVL was used to compute a Padé-
based reduced-order model of the package, and it was found that a model

H
(1)
n of order n = 80 is sufficient to match the transfer-function components

of interest. However, the model H
(1)
n has a few poles in the right half of the

complex plane, and therefore it is not passive.
In order to obtain a passive reduced-order model, we ran SyMPVL again

on the package example, and this time, also generated the projected reduced-

order model H
(2)
n given by (5.27). The expansion point s0 = 5π × 109

was used. Recall that H
(2)
n is only a Padé-type approximant and thus less

accurate than the Padé approximant H
(2)
n . Therefore, we now have to go to

order n = 112 to obtain a projected reduced-order model H
(2)
n that matches

the transfer-function components of interest. Figures 5.1 and 5.2 show the
voltage-to-voltage transfer function between the external terminal of pin
no. 1 and the internal terminals of the same pin and the neighbouring pin

no. 2, respectively. The plots show results with the projected model H
(2)
n

and the Padé model H
(2)
n , both of order n = 112, compared with an exact

analysis.

In Figure 5.3 we compare the relative error of the projected model H
(2)
112

and the Padé model H
(1)
112 of the same size. Clearly, the Padé model is more
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accurate. However, out of the 112 poles of H
(1)
112, 22 have positive real parts,

violating the passivity of the Padé model. On the other hand, the projected
model is passive.

5.6. An extracted RC circuit

This is an extracted RC circuit with about 4000 elements and m = 20 ports.
The expansion point s0 = 0 was used. Since the projected model and the
Padé model are identical for RC circuits, we only computed the Padé model
via SyMPVL.

The point of this example is to illustrate the usefulness of the deflation
procedure built into SyMPVL. Sweeps through the first two Krylov blocks, R
and MR, of the block Krylov matrix (5.5) were sufficient to obtain a reduced-
order model that matches the transfer function in the frequency range of
interest. During the sweep through the second block, 6 almost linearly de-
pendent vectors were discovered and deflated. As a result, the reduced-order
model obtained with deflation is only of size n = 2m − 6 = 34. When SyM-
PVL was rerun on this example, with deflation turned off, a reduced-order
model of size n = 40 was needed to match the transfer function. In Fig-
ure 5.4, we show the H1,11 component of the reduced-order model obtained
with deflation and without deflation, compared to the exact transfer func-
tion. Clearly, deflation leads to a significantly smaller reduced-order model
that is as accurate as the bigger one generated without deflation.

6. Approaches based on the Arnoldi process

The Arnoldi process (Arnoldi 1951) is another widely used Krylov-subspace
method. A band version of the Arnoldi process that is suitable for multiple
starting vectors can also be used for reduced-order modelling. However, the
models generated from the band Arnoldi process are only Padé-type models.

In contrast to the band Lanczos algorithm, the band Arnoldi process only
involves one of the starting blocks, namely R, and it only uses matrix-vector
products with M . Moreover, the band Arnoldi process only generates one
set of vectors, v1, v2, . . . , vn, instead of the two sequences of right and left
vectors produced by the band Lanczos algorithm. The Arnoldi vectors span
the nth right block Krylov subspace (induced by M and R):

span{ v1, v2, . . . , vn } = Kn(M, R).

The Arnoldi vectors are constructed to be orthonormal:

V H
n Vn = I, where Vn :=

[
v1 v2 · · · vn

]
.

After n iterations, the Arnoldi process has generated the first n Arnoldi
vectors, namely the n columns of the matrix Vn, as well as an n× n matrix
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G
(pr)
n of recurrence coefficients, and, provided that n ≥ m, an n×m matrix

ρ
(pr)
n . The matrices G

(pr)
n and ρ

(pr)
n are projections of the matrices M and

R onto the subspace spanned by the columns of Vn, which is just the block
Krylov subspace Kn(M, R). More precisely, we have

G(pr)
n = V H

n MVn and ρ(pr)
n = V H

n R. (6.1)

The band Arnoldi process can be stated as follows.

Algorithm 6.1. (Band Arnoldi process)

INPUT: A matrix M ∈ C
n×n;

A block of m right starting vectors R =
[
r1 r2 · · · rm

]
∈

C
n×m.

OUTPUT: The n × n Arnoldi matrix G
(pr)
n .

The matrix Vn =
[
v1 v2 · · · vn

]
containing the first n

Arnoldi vectors, and the matrix ρ
(pr)
n .

(0) For k = 1, 2, . . . , m, set v̂k = rk.
Set mc = m and I = ∅.

For n = 1, 2, . . . , until convergence or mc = 0 do:

(1) (If necessary, deflate v̂n.)
Compute ‖v̂n‖2.
Decide if v̂n should be deflated. If yes, do the following:

(a) Set v̂defl
n−mc

= v̂n and store this vector. Set I = I ∪ {n − mc }.

(b) Set mc = mc − 1. If mc = 0, set n = n − 1 and stop.

(c) For k = n, n + 1, . . . , n + mc − 1, set v̂k = v̂k+1.

(d) Repeat all of step (1).

(2) (Normalize v̂n to obtain vn.)
Set

gn,n−mc
= ‖v̂n‖2 and vn =

v̂n

gn,n−mc

.

(3) (Orthogonalize the candidate vectors against vn.)
For k = n + 1, n + 2, . . . , n + mc − 1, set

gn,k−mc
= vH

n v̂k and v̂k = v̂k − vn gn,k−mc
.

(4) (Advance the block Krylov subspace to get v̂n+mc
.)

(a) Set v̂n+mc
= M vn.

(b) For k = 1, 2, . . . , n, set

gk,n = vH
k v̂n+mc

and v̂n+mc
= v̂n+mc

− vk gk,n.
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(5) (a) For k ∈ I, set gn,k = vH
n v̂defl

k .

(b) Set

G(pr)
n =

[
gi,k

]
i,k=1,2,...,n

,

kρ = m + min{ 0, n − mc },

ρ(pr)
n =

[
gi,k−m

]
i=1,2,...,n; k=1,2,...,kρ

.

(6) Check if n is large enough. If yes, stop.

Note that, in contrast to the band Lanczos algorithm, the band Arnoldi
process requires the storage of all previously computed Arnoldi vectors.

Like the band Lanczos algorithm, the band Arnoldi process can also be
employed for reduced-order modelling. Let M , R, and L be the matrices
defined in (3.5). After running Algorithm 6.1 (applied to M and R) for n

steps, we have obtained the matrices G
(pr)
n and ρ

(pr)
n , as well as the matrix

Vn of Arnoldi vectors. The transfer function Hn of a reduced-order model
Hn can now be defined as follows:

Hn(s) =
(
V H

n L
)H (

I − (s − s0)V
H
n MVn

)
−1(

V H
n R

)
.

Using the relations (6.1) for G
(pr)
n and ρ

(pr)
n , the formula for Hn reduces to

Hn(s) =
(
V H

n L
)H (

I − (s − s0)G
(pr)
n

)
−1

ρ(pr)
n . (6.2)

The matrices G
(pr)
n and ρ

(pr)
n are directly available from Algorithm 6.1. In

addition, we also need to compute the matrix

η(pr)
n = V H

n L.

It turns out that the transfer function (6.2) defines a matrix-Padé-type
reduced-order model.

Theorem 6.2. (Matrix-Padé-type model) Suppose that Algorithm 6.1
is run with exact deflation only and that n ≥ m. Then, the reduced-order
model associated with the reduced-order transfer function (6.2) is a matrix-
Padé-type model of the linear dynamical system (2.1) and (2.2). More pre-
cisely, the Taylor expansions about s0 of the transfer functions (2.8), H,
and (6.2), Hn, agree in at least

q′(n) ≥

⌊
n

m

⌋

leading coefficients:

H(s) = Hn(s) + O
(
(s − s0)

q′(n)
)
. (6.3)

A proof of Theorem 6.2 is given in Freund (2000b).
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Remark 4. The number q′(n) is the exact number of terms matched in
the expansion (6.3) provided that no exact deflations occur in Algorithm 6.1.
In the case of exact deflations, the number of matching terms is somewhat
higher, but so is the number of matching terms for the matrix-Padé model
of Theorem 5.2; see Freund (2000b). In particular, the matrix-Padé model
is always more accurate than the matrix-Padé-type model obtained from
Algorithm 6.1. On the other hand, the band Arnoldi process is certainly
simpler than the band Lanczos process. Furthermore, the true orthogonality
of the Arnoldi vectors generally results in better numerical behaviour than
the bi-orthogonality of the Lanczos vectors.

Remark 5. For the special case of RCL subcircuits, the algorithm PRIMA
proposed by Odabasioglu (1996) and Odabasioglu, Celik and Pileggi (1997)
can be interpreted as a special case of the Arnoldi reduced-order modelling
procedure described here. Furthermore, in Freund (1999a) and (2000b) it
is shown that the reduced-order model produced by PRIMA is mathemati-
cally equivalent to the additional passive model produced by SyMPVL. In
contrast to PRIMA, however, SyMPVL also produces a true matrix-Padé
model, and thus PRIMA does not appear to have any real advantage over
– or even be competitive with – SyMPVL.

Remark 6. It is also possible to devise a two-sided Arnoldi procedure and
then generate Padé models from it. Such an approach is described in Cullum
and Zhang (2002).

7. Circuit-noise computations

In this section, we discuss the use of reduced-order modelling for circuit-noise
computations. In particular, we show how noise-type transfer functions can
be rewritten so that reduced-order modelling techniques for linear dynamical
systems can be applied. The material in this section is based on the paper
by Feldmann and Freund (1997).

7.1. The problem

Noise in electronic circuits is caused by the stochastical fluctuations in cur-
rents and voltages that occur within the devices of the circuit. We refer
the reader to Chapter 8 of Davidse (1991) or to van der Ziel (1986) for an
introduction to circuit noise and the main noise mechanisms. Noise-analysis
algorithms for circuits in DC steady-state have been available for a long
time in traditional circuit simulators such as SPICE (Rohrer, Nagel, Meyer
and Weber 1971). As we will now describe, simulation techniques based on
reduced-order modelling, such as PVL and MPVL, can easily be extended
to include noise computations.
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Noise in circuit devices is modelled by stochastic processes. In the time
domain, a stochastic process is characterized in terms of statistical averages,
such as the mean and autocorrelation, and in the frequency domain, it is
described by the spectral power density. The main types of noise in inte-
grated circuits are thermal noise, shot noise, and flicker noise. Thermal and
shot noise represent white noise, that is, their spectral power densities do
not depend on the frequency ω. Flicker noise is modelled by a stochastic
process with a spectral power density that is proportional to (1/ω)β where
β is a constant of about one.

Next, we describe the problem of noise computation for circuits with con-
stant excitation in steady-state (DC). Moreover, we assume that all time-
varying circuit elements are independent sources. In this case, the general
system of circuit equations (1.1) simplifies to a system of the form

d

dt
q(x̂) + f(x̂) = b0. (7.1)

Here, b0 denotes the constant excitation vector. Let x̂0 be a DC operating
point of the circuit, that is, x̂0 is a constant vector that satisfies f(x̂0) = b0.
Adding noise sources to (7.1) gives

d

dt
q(x̂ + x) + f(x̂ + x) = b0 + B ν(t), (7.2)

where ν(t) is a vector stochastic process of length m that describes the noise
sources, B ∈ R

N×m is the noise-source incidence matrix, and m denotes the
number of noise sources. The vector function x = x(t) in (7.2) represents
the stochastical deviations of the circuit variables from the DC operating
point x̂0 that are caused by the noise sources. By linearizing (7.2) about x̂0

and using the fact that f(x̂0) = b0, we obtain the following linear system of
DAEs:

E
dx

dt
= Ax + Bν(t), (7.3)

y(t) = CT x(t). (7.4)

Here,

A = −Dxf(x̂0) and E = Dxq(x̂0) (7.5)

that is, A is the negative of the Jacobian matrix of f at the point x̂0 and E
is the Jacobian matrix of q at the point x̂0. Furthermore, in (7.4), y(t) is a
vector stochastic process of length p describing the stochastical deviations at
the outputs of interest due to the noise sources, and C ∈ R

N×p is a constant
matrix that selects the outputs of interest. Note that (7.3) and (7.4) describe
a linear dynamical system of the form (1.2) and (1.3) with m inputs and
p outputs. Thus we can use MPVL or, if m = p = 1, PVL to generate
reduced-order models for (7.3) and (7.4).
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For noise computations in the frequency domain, the goal is to compute
the (p×p)-cross-spectral power density matrix Sy(ω) of the vector stochastic
process y in (7.4). It turns out that

Sy(ω) = CT (i ωE − A)−1B Sν(ω)BT (i ωE − A)−HC (7.6)

for all ω ≥ 0. Here, ω denotes frequency, and Sν(ω) is the given m × m
cross-spectral power density matrix of the noise sources ν(t) in (7.2). We
remark that the diagonal entries of Sν(ω) are the spectral power densities of
the noise sources, and that nonzero off-diagonal entries of Sν(ω) occur only
if there is coupling between some of the noise sources. Moreover, if all noise
sources are white, then Sν is a constant matrix.

7.2. Reformulation as a transfer function

Clearly, the matrix-valued function (7.6), Sy, does not have the form of
a transfer function (2.8). Consequently, the reduced-order modelling tech-
niques we discussed so far cannot be applied directly to Sy. However, for
the physical relevant values ω ≥ 0 and under some mild assumptions on
the form of Sν , we can rewrite (7.6) as a function of the type (2.8). More
precisely, we assume that

Sν(ω) = (P (i ω))−1 for all ω ≥ 0, (7.7)

where

P (s) = P0 + P1s + · · · + PMsM , Pi ∈ C
m×m, 0 ≤ i ≤ M, (7.8)

is any matrix polynomial of degree M (that is, PM = 0). In particular, for
the important special case that all noise sources are white, as in the case of
thermal and shot noise, we have

P (s) = P0 = S−1
ν and M = 0. (7.9)

If Sν(ω) does depend on the frequency, as in the case of flicker noise, then
the assumption (7.7) is satisfied at least approximately, see Feldmann and
Freund (1997).

By inserting (7.7) into (7.6) and setting

H(s) := CT (sE − A)−1B (P (s))−1BT (sE − A)−HC, s ∈ C, (7.10)

it follows that

H(i ω) = Sy(ω) for all ω ≥ 0. (7.11)

The relation (7.11) suggests first generating an approximation Hn to the
function H in (7.10) and then using

Sy(ω) ≈ Hn(i ω) (7.12)

as an approximation to Sy. It turns out that the function H can be rewritten
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as a transfer function of the type (2.8), and thus we can employ MPVL (or
PVL if p = 1) to obtain Hn as an nth matrix-Padé approximant to H. More
precisely, in Feldmann and Freund (1997), it is shown that

H(s) = C̃T
(
s Ẽ − Ã

)
−1

C̃ for all s ∈ C. (7.13)

Here, C̃ ∈ C
Ñ×p and Ã, Ẽ ∈ C

Ñ×Ñ are matrices given by

C̃ :=




C
0N×p

0m×p

0m×p
...

0m×p




, Ã :=




0 AT 0 0 · · · 0
A 0 −B 0 · · · 0

0 −BT −P0 0
. . .

...

0 0 0 I
. . . 0

...
. . .

. . .
. . .

. . . 0
0 · · · · · · 0 0 I




,

Ẽ :=




0 −ET 0 0 · · · 0
E 0 0 0 · · · 0
0 0 P1 P2 · · · PM

0 0 I 0 · · · 0
...

. . .
. . .

. . .
. . . 0

0 · · · · · · 0 I 0




,

(7.14)

and Ñ := 2 · N + m · M .
If the matrix polynomial P is linear, that is, M = 1 in (7.8), the matri-

ces (7.14) reduce to

C̃ :=




C
0
0


, Ã :=




0 AT 0
A 0 −B
0 −BT −P0


, Ẽ :=




0 −ET 0
E 0 0
0 0 P1


. (7.15)

The important special case (7.9) of white noise is also covered by (7.15) with
P0 := S−1

ν and P1 := 0. In this case, by eliminating the third block rows

and columns in (7.15), the matrices C̃, Ã, and Ẽ can be further reduced to

C̃ =

[
C
0

]
, Ã =

[
0 AT

A BT Sν B

]
, Ẽ =

[
0 −ET

E 0

]
. (7.16)

7.3. A PVL simulation

We now present results of a typical simulation with the noise-computation
algorithm described in Section 7.2.

The example is a 5th-order Cauer filter that uses ten 741 operational
amplifiers as building blocks. The total size of the problem is 463 variables.
The noise sources are all white. The circuit has a single input and a single
output, and we employ PVL to compute an nth Padé approximant to the
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transfer function of the circuit. In addition, we also compute the spectral
power density of the noise at the single output, by applying PVL to the
rewritten noise-type transfer function (7.13) with matrices C, Ã, and Ẽ
given by (7.16). Figure 7.1 shows the exact transfer function of the 5th
order Cauer filter compared to the PVL-computed Padé approximants of
order n = 16 and n = 18. The 18th order approximation captures the
behaviour of the circuit almost exactly.

Figure 7.2 shows the spectral power density of the output noise over the
same frequency range and for the same approximation order n = 16 and
n = 18. Note that the same number n of PVL iterations is needed to
obtain an almost perfect match of both the transfer function and the noise
spectrum.

8. Second-order linear dynamical systems

In this section, we describe some reduced-order modelling approaches for
second-order linear dynamical systems. Most of the material in this section
is taken from the unpublished report by Bai, Dewilde and Freund (2002).

8.1. The problem

Second-order models arise naturally in the study of many types of physical
systems, such as electrical and mechanical systems. A time-invariant multi-
input multi-output second-order system is described by equations of the form

M
d2q

dt2
+ D

dq

dt
+ Kq = Pu(t), (8.1)

y(t) = LT q(t), (8.2)

together with initial conditions q(0) = q0 and d
dt q(0) = q̇0. Here, q(t) ∈ R

N

is the vector of state variables, u(t) ∈ R
m is the input vector, and y(t) ∈ R

p

is the output vector. Moreover, M , D, K ∈ R
N×N are system matrices, such

as mass, damping, and stiffness matrices in structural dynamics, P ∈ R
N×m

is the input distribution matrix, and L ∈ R
N×p is the output distribution

matrix. Finally, N is the state-space dimension, and m and p are the number
of inputs and outputs, respectively. In most practical cases, m and p are
much smaller than N .

The second-order system (8.1) and (8.2) can be reformulated as an equiv-
alent linear first-order system in many different ways. We will use the fol-
lowing equivalent linear system:

E
dx

dt
= Ax + Bu(t), (8.3)

y(t) = CT x(t), (8.4)
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where

x =

[
q
dq
dt

]
, A =

[
−K 0
0 W

]
, E =

[
D M
W 0

]
, B =

[
P
0

]
, C =

[
L
0

]
.

Here, W ∈ R
N×N can be any nonsingular matrix. A common choice is the

identity matrix, W = I. If the matrices M , D, and K are all symmetric and
M is nonsingular, as is often the case in structural dynamics, we can choose
W = M . The resulting matrices A and E in the linearized system (8.3) are
then symmetric, and thus preserve the symmetry of the original second-order
system.

Assume that, for simplicity, we have zero initial conditions, that is, q(0) =
q0,

d
dt q(0) = 0, and u(0) = 0 in (8.1) and (8.2). Then, by taking the Laplace

transform of (8.1) and (8.2), we obtain the following algebraic system:

s2MQ(s) + DQ(s) + KQ(s) = PU(s),

Y (s) = LT Q(s).

Eliminating Q(s) in this system results in the frequency-domain input-
output relation Y (s) = H(s)U(s), where

H(s) := LT (s2M + sD + K)−1P

is the transfer function. In view of the equivalent linearized system (8.3)
and (8.4), the transfer function can also be written as

H(s) = CT (sE − A)−1B.

If the matrix K in (8.1) is nonsingular, then s0 = 0 is guaranteed not to be
a pole of H. In this case, H can be expanded about s0 = 0 as follows:

H(s) = µ0 + µ1s + µ2s
2 + · · · ,

where the matrices µj are the so-called low-frequency moments. In terms
of the matrices of the linearized system (8.3) and (8.4), the moments are
given by

µj = −CT (A−1E)jA−1B, j = 0, 1, 2, . . . .

8.2. Frequency-response analysis methods

In this subsection, we describe the use of eigensystem analysis to tackle the
second-order system (8.1) and (8.2) directly.

We assume that the input force vector u(t) of (8.1) is time-harmonic:

u(t) = ũ(ω)e i ωt,

where ω is the frequency of the system. Correspondingly, we assume that
the state variables of the second-order system can be represented as follows:

q(t) = q̃(ω)e i ωt.



310 R. W. Freund

The problem of solving the system of second-order differential equations (8.1)
then reduces to solving the parametrized linear system of equations

(−ω2M + i ωD + K) q̃(ω) = Pũ(ω) (8.5)

for q̃(ω). This approach is called the direct frequency-response analysis
method. For a given frequency ω0, we can use a linear system solver, ei-
ther direct or iterative, to obtain the desired vector q̃(ω0).

Alternatively, we can try to reduce the cost of solving the large-scale
parametrized linear system of equations (8.5) by first applying an eigensys-
tem analysis. This approach is called the modal frequency-response analysis
in structural dynamics. The basic idea is to first transfer the coordinates
q̃(ω) of the state vector q(t) to new coordinates p(ω) as follows:

q(t) ∼= Wkp(ω)e i ωt.

Here, Wk consists of k selected modal shapes to retain the modes whose res-
onant frequencies lie within the range of forcing frequencies. More precisely,
Wk consists of k selected eigenvectors of the underlying quadratic eigenvalue
problem (λ2M + λD + K)w = 0. Equation (8.5) is then approximated by

(−ω2MWk + i ωDWk + KWk) p(ω) = Pũ(ω).

Multiplying this equation from the left by W T
k , we obtain a k×k parametrized

linear system of equations for p(ω):

(−ω2 (W T
k MWk) + i ω (W T

k DWk) + (W T
k KWk)) p(ω) = W T

k P (ω).

Typically, k ≪ n. The main question now is how to obtain the desired
modal shapes Wk. One possibility is to simply extract Wk from the matrix
pair (M, K) by ignoring the contribution of the damping term. This is called
the modal superposition method in structural dynamics. This approach is
applicable under the assumption that the damping term is of a certain form.
For example, this is the case for so-called Rayleigh damping D = αM +
βK, where α and β are scalars (Clough and Penzien 1975). In general,
however, we may need to solve the full quadratic eigenvalue problem (λ2M +
λD + K)w = 0 in order to obtain the desired modal shapes Wk. Some of
these techniques have been reviewed in the recent survey paper (Tisseur and
Meerbergen 2001) on the quadratic eigenvalue problem.

8.3. Reduced-order modelling based on linearization

An obvious approach to constructing reduced-order models of the second-
order system (8.1) and (8.2) is to apply any of the model-reduction tech-
niques for linear systems to the linearized system (8.3) and (8.4). In partic-
ular, we can employ the Krylov-subspace techniques discussed in Sections 5
and 6.
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The resulting approach can be summarized as follows.

1. Linearize the second-order system (8.1) and (8.2) by properly defining
the 2N × 2N matrices A and E of the equivalent linear system (8.3)
and (8.4). Select an expansion point s0 ‘close’ to the frequency range
of interest and such that the matrix A − s0E is nonsingular.

2. Apply a suitable Krylov process, such as the nonsymmetric band Lanc-
zos algorithm described in Section 5, to the matrix M := (A−s0E)−1E
and the blocks of right and left starting vectors R := (A − s0E)−1B
and L := C to obtain bi-orthogonal Lanczos basis matrices Vn and
Wn for the nth right and left block-Krylov subspaces Kn(M, R) and
Kn(MT , L).

3. Approximate the state vector x(t) by Vnz(t), where z(t) is determined
by the following linear reduced-order model of the linear system (8.3)
and (8.4):

En
dz

dt
= Anz + Bnu(t),

y(t) = CT
n z(t).

Here, En = T
(pr)
n , An = In + s0T

(pr)
n , Bn = ρ

(pr)
n , Cn = ∆T

nη
(pr)
n , and

T
(pr)
n , ρ

(pr)
n , η

(pr)
n , and ∆n are the matrices generated by the nonsym-

metric band Lanczos Algorithm 5.1.

In Figure 8.1, we show the results of this approach applied to the linear-
drive multi-mode resonator structure described in Clark, Zhou and Pister
(1998). The solid lines are the Bode plots of the frequency response of the
original second-order system, which is of dimension N = 63. The dashed
lines are the Bode plots of the frequency response of the reduced-order model
of dimension n = 12. The relative error between the transfer functions of
the original system and the reduced-order model of dimension n = 12 is less
than 10−4 over the frequency range shown in Figure 8.1.

There are a couple of advantages to the linearization approach. First,
we can directly employ existing reduced-order modelling techniques devel-
oped for linear systems. Second, we can also exploit the structures of the
linearized system matrices A and E in a Krylov process to reduce the com-
putational cost. However, the linearization approach also has disadvantages.
In particular, it ignores the physical meaning of the original system matrices,
and more importantly, the reduced-order models are no longer in a second-
order form. For engineering design and control of structural systems, it is
often desirable to have reduced-order models that preserve the second-order
form: see, e.g., Su and Craig, Jr. (1991).
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Figure 8.1. Bode plots for the original system and the reduced-order
model of dimension n = 12.

8.4. Reduced-order modelling based on second-order systems

In this section, we discuss a Krylov-subspace technique that produces a
reduced-order model of second-order form. This approach is based on the
work by Su and Craig, Jr. (1991).

The key observation is the following. In view of the linearization (8.3)
and (8.4) of the second-order system (8.1) and (8.2), the desired Krylov
subspace for reduced-order modelling is

span
{

B̃, (A−1E) B̃, (A−1E)2 B̃, . . . , (A−1E)n−1 B̃
}
.

Here, B̃ := −A−1
[
B C

]
. Moreover, we have assumed that the matrix A

in (8.3) is nonsingular. Let us set

Rj =

[
Rd

j

Rv
j

]
:= (−A−1E)j B̃,

where Rd
j is the vector of length N corresponding to the displacement portion

of the vector Rj , and Rv
j is the vector of length N corresponding to the

velocity portion of the vector Rj : see Su and Craig, Jr. (1991). Then, in
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view of the structure of the matrices A and E, we have
[
Rd

j

Rv
j

]
= (−A−1E)

[
Rd

j−1

Rv
j−1

]
=

[
K−1DRd

j−1 + K−1MRd
j−1

−Rd
j−1

]
.

Note that the jth velocity-portion vector Rv
j is the same (up to its sign) as

the (j − 1)st displacement-portion vector Rd
j−1. In other words, the second

portion Rv
j of Rj is the ‘one-step’ delay of the first portion Rd

j−1 of Rj . This
suggests that we may simply choose

span
{

Rd
0, R

d
1, R

d
2, . . . , R

d
n−1

}
(8.6)

as the projection subspace used for reduced-order modelling.
In practice, for numerical stability, we may opt to employ the Arnoldi

process to generate an orthonormal basis Qn of the subspace (8.6). The
resulting procedure can be summarized as follows.

Algorithm 8.1. (Algorithm by Su and Craig Jr.)

(0) (Initialization.)

Set Rd
0 = K−1

[
P L

]
, Rv

0 = 0, U0S0V
T
0 = (Rd

0)
T KRd

0

(by computing an SVD),

Qd
1 = Rd

0U0S
−1/2
0 , and Qv

1 = 0.

(1) (Arnoldi loop.)

For j = 1, 2, . . . , n − 1 do:

Set Rd
j = K−1

(
DQd

j−1 + MQv
j−1

)
and Rv

j = −Qd
j−1.

(2) (Orthogonalization.)

For i = 1, 2, . . . , j do:

Set Ti = (Qd
i )

T KRd
j , Rd

j = Rd
j − Qd

i Ti, and Rv
j = Rv

j − Qv
i Ti.

(3) (Normalization.)

Set U0S0V
T
0 = (Rd

j )
T KRd

j (by computing an SVD),

Qd
j+1 = Rd

jU0S
−1/2
0 , and Qv

j+1 = Rv
jU0S

−1/2
0 .

An approximation of the state vector q(t) can then be obtained by con-
straining q(t) to the subspace spanned by the columns of Qn, that is,
q(t) ≈ Qnz(t). Moreover, the reduced-order state vector z(t) is defined
as the solution of the following second-order system:

Mn
d2q

dt2
+ Dn

dq

dt
+ Knq = Pnu(t), (8.7)

y(t) = LT
n q(t), (8.8)
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Figure 8.2. Frequency-response analysis (top plot) and relative errors
(bottom plot) of a finite-element model of a shaft.

where Mn := QT
nMQn, Dn := QT

nDQn, Kn := QT
nKQn, Pn := QT

nP , and
Ln := QT

nL. Note that (8.7) and (8.8) describe a reduced-order model in
second-order form of the original second-order system (8.1) and (8.2).

Su and Craig, Jr. (1991) describe several advantages of this approach.
Here, we present some numerical results of a frequency-response analysis of
a second-order system of order N = 400, which arises from a finite-element
model of a shaft on bearing support with a damper. In the top plot of
Figure 8.2, we plot the magnitudes of the transfer function H computed
exactly, approximated by the model-superposition (MSP) method, and ap-
proximated by the Krylov-subspace technique (ROM). For the MSP method,
we used the 80 modal shapes W80 from the matrix pencil λ2M + K. The
reduced-order model (8.7) and (8.8) is also of dimension n = 80. The bottom
plot of Figure 8.2 shows the relative errors between the exact transfer func-
tion and its approximations based on the MSP method (dash-dotted line)
and the ROM method (dashed line). The plots indicate that no accuracy
has been lost by the Krylov subspace-based method.
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9. Concluding remarks

We have presented a survey of the most common techniques for reduced-
order modelling of large-scale linear dynamical systems. By and large, the
area of linear reduced-order modelling is fairly well explored, and we have
a number of efficient techniques at our disposal. Still, some open prob-
lems remain. One such problem is the construction of reduced-order models
that preserve stability or passivity and, at the same time, have optimal
approximation properties. Particularly in circuit simulation, reduced-order
modelling is used to substitute large linear subsystems within the simula-
tion of even larger, generally nonlinear systems. It would be important to
better understand the effects of these substitutions on the overall nonlinear
simulation.

The systems arising in the simulation of electronic circuits are nonlinear
in general, and it would be highly desirable to apply nonlinear reduced-order
modelling techniques directly to these nonlinear systems. However, the area
of nonlinear reduced-order modelling is in its infancy compared to the state
of the art of linear reduced-order modelling. We expect that further progress
in model reduction will mainly occur in the area of nonlinear reduced-order
modelling.

In this survey, we have focused solely on Krylov subspace-based model-
reduction techniques for time-invariant systems. There are of course many
other order-reduction approaches that do not fall into this limited cate-
gory. Methods that we have not treated here include balanced realiza-
tions (Moore 1981), Hankel-norm optimal approximations (Glover 1984),
order reduction of time-varying systems (Roychowdhury 1999), and proper
orthogonal decomposition, which is also known as Karhunen–Loève decom-
position (Holmes, Lumley and Berkooz 1996, Glavaški, Marsden and Murray
1998, Rathinam and Petzold 2002).
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